

MCR106-6, MCR106-8

Description

PNPN devices designed for high volume consumer applications such as temperature, light and speed control; process and remote control, and warning systems where reliability of operation is important.

Features

- Glass-Passivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability

Po

• Lead-free Packages are Available

Pin Out

Functional Diagram

Additional Information

Resources

Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (– 40 to 110°C, Sine Wave, 50 to 60 Hz, R _{GK} =1Kohm)	MCR106-6 MCR106-8	V _{drm} , V _{rrm}	400 600	V
On-State RMS Current (180° Conduction Angles; T _c = 93°C)		I _{TM (RMS)}	4.0	А
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 110°C		I _{tsm}	25	A
Average On-State Current (180° Conduction Angles; T _c = 93°C)		I _{T(AV)}	2.55	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	2.6	A²s
Forward Peak Gate Power ((T_c = 93°C, Pulse Width \leq 1.0 μs)		P _{GM}	0.5	W
Forward Average Gate Power, (T _c = 93°C, t = 8.3 ms)		P _{G(AV)}	0.1	W
Forward Peak Gate Current, (T $_{\rm c}$ = 93°C, Pulse Width \leq 1.0 μs)		I _{GM}	0.2	A
Peak Reverse Gate Voltage, (T $_{_C}$ = 93°C, Pulse Width \leq 1.0 $\mu s)$		V _{RGM}	6.0	V
Operating Junction Temperature Range		TJ	-40 to +110	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C
Mounting Torque		_	6.0	in. lb.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

2. Torque rating applies with use of compression washer (B52200-F006 or equivalent). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common. (See AN209B). For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +200°C. For optimum results, an activated flux (oxide removing) is recommended.

Thermal Characteristics

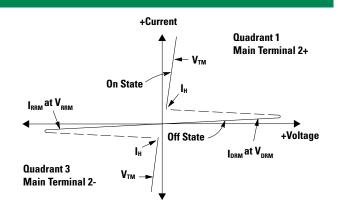
Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	3.0 75	°C/W
Maximum Lead Temperature for Soldering Pur 10 seconds	poses, 1/8" from case for	TL	260	°C

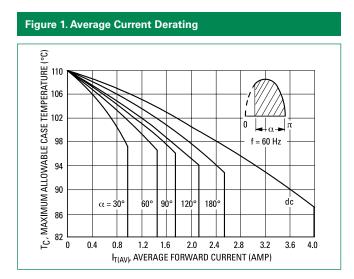
Electrical Characteristics - **OFF** ($T_1 = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T, = 25°C	I _{DRM} ,	-	-	10	
(V_{AK} = Rated V_{DRM} and V_{RRM} ; R_{GK} =1Kohm)	T_ = 110°C	I	-	-	200	μA

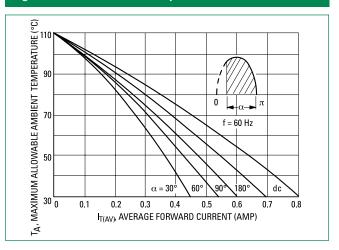
Electrical Characteristics \cdot **ON** (T₁ = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Мах	Unit
Peak Forward On–State Voltage (Note 3) ($I_{TM} = 4 \text{ A Peak}$)		V _{TM}	-	_	2.0	V
Gate Trigger Current (Continuous DC) (Note 4)	$(V_{AK} = 7 \text{ Vdc}; R_{L} = 100 \Omega)$	I _{gt}	-	-	200	μA
	$(T_{c} = -40^{\circ}C)$		-	_	500	
Gate Trigger Voltage (Continuous DC) (Note 4) ($V_{AK} = 12 \text{ V}$; $R_{L} = 100 \Omega$, TJ=110°C)		V _{gt}	_	_	1.0	V
Gate Trigger Non-Trigger Voltage (Note 4) V_{AK} = 12VDC; R_{L} = 100 Ω)		V _{gd}	0.2	_	-	V
Holding Current (V_{AK} =7V,, Initiating Current = 200 mA, R_{GK} = 1k Ω)		I _H	-	_	5.0	mA


Dynamic Characteristics					
Characteristic	Symbol	Min	Тур	Мах	Unit
Critical Rate of Rise of Off–State Voltage ($R_{GK} = 1 \text{ k } \Omega, T_J = 110^{\circ}\text{C}$)	dv/dt	-	10	-	V/µs
Critical Rate of Rise of On–State Current $I_{g} = 150 \text{ A} \qquad T_{J} = 125^{\circ}\text{C}$	di/dt	-	-	75	A/µs


3. Pulse Test: Pulse Width \leq 1.0 ms, Duty Cycle \leq 1 % .

4. R_{GK} current is not included in measurement.


Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

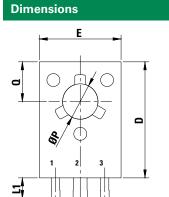
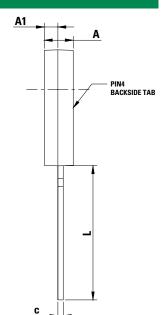
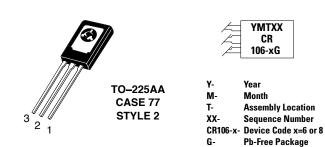


Figure 2. On-State Power Dissipation




b

b1

b2 x2

Part Marking System

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Dim	n Inches Min Max		Millin	neters
Dim			Min	Max
Α	0.102	0.110	2.60	2.80
A1	0.047	0.055	1.20	1.40
b	0.028	0.034	0.70	0.86
b2	0.028	0.034	0.70	0.86
С	0.019	0.022	0.49	0.57
D	0.417	0.449	10.60	11.40
E	0.291	0.323	7.40	8.20
е	0.090 TYP		2.29 TYP	
L	0.551	0.630	14.00	16.00
L1	0.091	0.106	2.30	2.70
Р	0.118	0.134	3.00	3.40
٥	0.142	0.157	3.60	4.00
b1	0.047	0.055	1.2	1.4

Ordering Information				
Device	Package	Shipping		
MCR106-6	TO-225AA			
MCR106-6G	TO-225AA (Pb-Free)	2500 / Dav		
MCR106-8	TO-225AA	2500 / Box		
MCR106-8G	TO–225AA (Pb–Free)			

Dimensioning and Tolerancing Per ANSI Y14.5M, 1982.
Controlling Dimension: Inch.
077-01 Thru -08 Obsolete, New Standard 077-09.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse: MCR106-8G MCR106-6G