KBPC10005~KBPC1010 ## SINGLE-PHASE SILICON BRIDGE RECTIFIERS **REVERSE VOLTAGE: 50 V to 1000 V** **FORWARD CURRENT: 10 A** #### **Features** - Reliable low cost construction - · Ideal for printed circuit board - · Low forward voltage drop - · Low reverse leakage current - · High surge current capability ## **Mechanical Data** · Case: KBPC ## **KBPC** Dimensions in inches and (millimeters) ## **Absolute Maximum Ratings and Characteristics** Rating at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20% | Symbol | KBPC Units | |-------------------|--|--|--|--|---|--|---|---| | | | | | | | | | | | V_{RRM} | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | V_{RMS} | 35 | 70 | 140 | 280 | 420 | 560 | 700 | V | | V_{DC} | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | I _(AV) | 10 | | | | | | | Α | | I _{FSM} | 200 | | | | | | Α | | | V _F | 1.2 | | | | | | V | | | I _R | 10
500 | | | | | | μΑ | | | CJ | 200 | | | | | | pF | | | $R_{\theta JA}$ | 25 | | | | | | °C/W | | | $R_{\theta JC}$ | 5 | | | | | | °C/W | | | T_J,T_S | - 55 to + 125 | | | | | | | °C | | | $\begin{array}{c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ I_{(AV)} \\ I_{FSM} \\ V_{F} \\ I_{R} \\ C_{J} \\ R_{\theta JA} \\ R_{\theta JC} \\ \end{array}$ | Symbol 10005 VRRM 50 VRMS 35 VDC 50 I(AV) IFSM VF IR CJ ReJA ReJC ReJC Red | Symbol 10005 1001 V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _(AV) I _{FSM} V _F I _R C _J R _{θJA} R _{θJC} R _{θJC} | Symbol 10005 1001 1002 V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _(AV) I _{FSM} V _F I _R C _J R _{θJA} R _{θJC} | Symbol 10005 1001 1002 1004 V _{RRM} 50 100 200 400 V _{RMS} 35 70 140 280 V _{DC} 50 100 200 400 I _(AV) 10 200 V _F 1.2 10 I _R 10 500 C _J 200 200 R _{θJA} 25 5 | Symbol 10005 1001 1002 1004 1006 V _{RRM} 50 100 200 400 600 V _{RMS} 35 70 140 280 420 V _{DC} 50 100 200 400 600 I _(AV) 10 200 V _F 1.2 10 500 C _J 200 200 200 R _{θJA} 25 5 | Symbol 10005 1001 1002 1004 1006 1008 V _{RRM} 50 100 200 400 600 800 V _{RMS} 35 70 140 280 420 560 V _{DC} 50 100 200 400 600 800 I _(AV) 10 200 400 600 800 V _F 1.2 10 500 500 1.2 I _R 10 500 200 200 200 R _{θJA} 25 R _{θJC} 5 5 5 5 5 6 600 800 | Symbol 10005 1001 1002 1004 1006 1008 1010 V _{RRM} 50 100 200 400 600 800 1000 V _{RMS} 35 70 140 280 420 560 700 V _{DC} 50 100 200 400 600 800 1000 I _(AV) 10 200 400 600 800 1000 V _F 1.2 10 500 500 500 700 C _J 200 200 200 700 < | ¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC. # SEMTECH ELECTRONICS LTD. (Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724) Dated: 16/07/2006 H $^{^{2)}}$ Unit mounted on 8.6 X 8.6 X 0.24" thick (22 X 22 X 0.6 cm) Al, Plate. ³⁾ Unit mounted on P.C.B. at 0.375" (9.5 mm) lead length with 0.5 x 0.5" (12 x 12 mm) copper pads. ### RATINGS AND CHARACTERISTIC CURVES (Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724) | CERTIFICATION CERTIFICATIO