HCPL0600, HCPL0601, HCPL0611, HCPL0637, HCPL0638, HCPL0639

High Speed-10 MBit/s Logic Gate Optocouplers

Single Channel:
HCPL0600, HCPL0601, HCPL0611

Dual Channel:
HCPL0637, HCPL0638, HCPL0639

Description

The HCPL06XX optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo–detector logic gate with a strobable output (single channel devices). The devices are housed in a compact small–outline package. This output features an open collector, thereby permitting wired OR outputs. The HCPL0600, HCPL0601 and HCPL0611 output consists of bipolar transistors on a bipolar process while the HCPL0637, HCPL0638, and HCPL0639 output consists of bipolar transistors on a CMOS process for reduced power consumption. The coupled parameters are guaranteed over the temperature range of −40°C to +85°C. An internal noise shield provides superior common mode rejection.

Features

- Compact SO8 Package
- Very High Speed—10 MBit/s
- Superior CMR
- Logic Gate Output
- Strobable Output (Single Channel Devices)
- Wired OR–open Collector

Safety and Regulatory Approvals

- UL1577, 3750 VAC RMS for 1 min
- DIN EN/IEC60747–5–5, 565 V Peak Working Insulation Voltage

Typical Applications

- Ground Loop Elimination
- LSTTL to TTL, LSTTL or 5–volt CMOS
- Line Receiver, Data Transmission
- Data Multiplexing
- Switching Power Supplies
- Pulse Transformer Replacement
- Computer–peripheral Interface

MARKING DIAGRAM

1. ON = ON Semiconductor Logo
2. 600 = Device Number
3. V = VDE mark indicates DIN EN/IEC60747–5–2 approval
 (Note: Only appears on parts ordered with VDE option – See Ordering Information Table)
4. X = One–Digit Year Code, e.g. ’3’
5. YY = Two Digit Work Week Ranging from ‘01’ to ‘53’
6. S = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.
Figure 1. Single-channel Circuit Drawing (HCPL0600, HCPL0601 and HCPL0611)

Figure 2. Dual-channel Circuit Drawing (HCPL0637, HCPL0638 and HCPL0639)

TRUTH TABLE (Positive Logic)

<table>
<thead>
<tr>
<th>Input</th>
<th>Enable</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H*</td>
<td>NC*</td>
<td>L*</td>
</tr>
<tr>
<td>L*</td>
<td>NC*</td>
<td>H*</td>
</tr>
</tbody>
</table>

*Dual channel devices or single channel devices with pin 7 not connected. A 0.1 μF bypass capacitor must be connected between pins 8 and 5. (See Note 2)
SAFETY AND INSULATIONS RATING
As per DIN EN/IEC 60747−5−5, this optocoupler is suitable for “safe electrical insulation” only within the safety limit data.
Compliance with the safety ratings shall be ensured by means of protective circuits.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 150 VRMS</td>
<td>I–IV</td>
</tr>
<tr>
<td>< 300 VRMS</td>
<td>I–III</td>
</tr>
</tbody>
</table>

Climatic Classification

Pollution Degree (DIN VDE 0110/1.89)

Comparative Tracking Index

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPR</td>
<td>Input−to−Output Test Voltage, Method A, VIORM x 1.6 = VPR, Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC</td>
<td>904</td>
<td>Vpeak</td>
</tr>
<tr>
<td>VORM</td>
<td>Maximum Working Insulation Voltage</td>
<td>565</td>
<td>Vpeak</td>
</tr>
<tr>
<td>VOTM</td>
<td>Highest Allowable Over−Voltage</td>
<td>4,000</td>
<td>Vpeak</td>
</tr>
<tr>
<td>DTI</td>
<td>Distance Through Insulation (Insulation Thickness)</td>
<td>≥ 0.4</td>
<td>mm</td>
</tr>
<tr>
<td>TS</td>
<td>Case Temperature (Note 1)</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>IN,INPUT</td>
<td>Input Current (Note 1)</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>PS,OUTPUT</td>
<td>Output Power (Note 1)</td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>RID</td>
<td>Insulation Resistance at TS, V_ID = 500 V (Note 1)</td>
<td>> 10^9</td>
<td>Ω</td>
</tr>
</tbody>
</table>

1. Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS (No Derating Required up to 85°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>−40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>TOPR</td>
<td>Operating Temperature</td>
<td>−40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>TJ</td>
<td>Junction Temperature</td>
<td>−40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>IF</td>
<td>DC/Average Forward Input Current</td>
<td>Each Channel</td>
<td>50</td>
</tr>
<tr>
<td>VE</td>
<td>Enable Input Voltage</td>
<td>Single Channel Devices Only</td>
<td>5.5</td>
</tr>
<tr>
<td>VR</td>
<td>Reverse Input Voltage</td>
<td>Each Channel</td>
<td>5.0</td>
</tr>
<tr>
<td>P1</td>
<td>Power Dissipation</td>
<td>Each Channel</td>
<td>45</td>
</tr>
<tr>
<td>VCC</td>
<td>Supply Voltage</td>
<td>(1 minute max)</td>
<td>7.0</td>
</tr>
<tr>
<td>IO</td>
<td>Output Current</td>
<td>Each Channel</td>
<td>15</td>
</tr>
<tr>
<td>VO</td>
<td>Output Voltage (each channel)</td>
<td>Each Channel</td>
<td>7.0</td>
</tr>
<tr>
<td>PO</td>
<td>Collector Output Power Dissipation</td>
<td>Each Channel</td>
<td>85</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{FL}</td>
<td>Input Current, Low Level</td>
<td>0</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>I_{FH}</td>
<td>Input Current, High Level</td>
<td>*6.3</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>Supply Voltage, Output</td>
<td>4.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{EL}</td>
<td>Enable Voltage, Low Level</td>
<td>0</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{EH}</td>
<td>Enable Voltage, High Level</td>
<td>2.0</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>T_{A}</td>
<td>Operating Temperature</td>
<td>−40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>N</td>
<td>Fan Out (TTL load)</td>
<td>8</td>
<td></td>
<td>TTL Loads</td>
</tr>
<tr>
<td>R_{L}</td>
<td>Output Pull–up</td>
<td>330</td>
<td>4000</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

*6.3 mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0 mA or less.

ELECTRICAL CHARACTERISTICS

\((T_{A} = −40°C \text{ TO } +85°C \text{ UNLESS OTHERWISE SPECIFIED})\)

INDIVIDUAL COMPONENT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{F}</td>
<td>Input Forward Voltage</td>
<td>I_F = 10 mA</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_A = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{VR}</td>
<td>Input Reverse Breakdown Voltage</td>
<td>I_R = 10 μA</td>
<td>5.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{F}/ΔT_A</td>
<td>Input Diode Temperature Coefficient</td>
<td>I_F = 10 mA</td>
<td>−1.5</td>
<td></td>
<td></td>
<td>mV/°C</td>
</tr>
</tbody>
</table>

DETECTOR

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>I_F = 0 mA, V_{CC} = 5.5 V</th>
<th>V_E = 0.5 V</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CH}</td>
<td>High Level Supply Current</td>
<td>Single Channel</td>
<td>10</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual Channel</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CL}</td>
<td>Low Level Supply Current</td>
<td>Single Channel</td>
<td>13</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual Channel</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EL}</td>
<td>Low Level Enable Current</td>
<td>V_{CC} = 5.5 V, V_E = 0.5 V</td>
<td>Single Channel</td>
<td>−1.6</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC} = 5.5 V, V_E = 2.0 V</td>
<td>Single Channel</td>
<td>−1.6</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EH}</td>
<td>High Level Enable Current</td>
<td>V_{CC} = 5.5 V, V_E = 0.5 V</td>
<td>Single Channel</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{EH}</td>
<td>High Level Enable Voltage</td>
<td>V_{CC} = 5.5 V, I_F = 10 mA</td>
<td>Single Channel</td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{EL}</td>
<td>Low Level Enable Voltage</td>
<td>V_{CC} = 5.5 V, I_F = 10 mA</td>
<td>Single Channel</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note 3)
SWITCHING CHARACTERISTICS
(TA = −40°C to +85°C, VCC = 5 V, IF = 7.5 mA unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>AC Characteristics</th>
<th>Test Conditions</th>
<th>Device</th>
<th>Min.</th>
<th>*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPLH</td>
<td>Propagation Delay Time to Output High Level</td>
<td>RL = 350 Ω, CL = 15 pF (Note 4) (Fig. 22)</td>
<td>TA = 25°C</td>
<td>All</td>
<td>20</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td>TPHL</td>
<td>Propagation Delay Time to Output Low Level</td>
<td>RL = 350 Ω, CL = 15 pF (Note 5) (Fig. 22)</td>
<td>TA = 25°C</td>
<td>All</td>
<td>25</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Pulse Width Distortion</td>
<td>RL = 350 Ω, CL = 15 pF (Fig. 20)</td>
<td>All</td>
<td>35</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tR</td>
<td>Output Rise Time (10–90%)</td>
<td>RL = 350 Ω, CL = 15 pF (Note 6) (Fig. 22)</td>
<td>Single Ch</td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dual Ch</td>
<td>17</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tF</td>
<td>Output Fall Time (90–10%)</td>
<td>RL = 350 Ω, CL = 15 pF (Note 7) (Fig. 22)</td>
<td>Single Ch</td>
<td>12</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dual Ch</td>
<td>5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tELH</td>
<td>Enable Propagation Delay Time to Output High Level</td>
<td>IF = 7.5 mA, VEH = 3.5 V, RL = 350 Ω, CL = 15 pF (Note 8) (Fig. 23)</td>
<td>HCPL0600, HCPL0601, HCPL0611</td>
<td>20</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tEHL</td>
<td>Enable Propagation Delay Time to Output Low Level</td>
<td>IF = 7.5 mA, VEH = 3.5 V, RL = 350 Ω, CL = 15 pF (Note 9) (Fig. 23)</td>
<td>HCPL0600, HCPL0601, HCPL0611</td>
<td>20</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common Mode Transient Immunity (at Output High Level)</td>
<td>RL = 350 Ω, TA = 25°C, IF = 0 mA, VOH (Min.) = 2.0 V (Note 10) (Fig. 24, 25)</td>
<td>VCM = 10 V</td>
<td>HCPL0600, HCPL0601, HCPL0611, HCPL0637</td>
<td>5,000</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCM = 50 V</td>
<td>HCPL0601, HCPL0638</td>
<td>10,000</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCM = 1,000 V</td>
<td>HCPL0611, HCPL0639</td>
<td>15,000</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCPL0639</td>
<td>25,000</td>
<td>V/μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common Mode Transient Immunity (at Output Low Level)</td>
<td>RL = 350 Ω, TA = 25°C, IF = 7.5 mA, VOL (Max.) = 0.8 V (Note 11) (Fig. 24, 25)</td>
<td>VCM = 10 V</td>
<td>HCPL0600, HCPL0601, HCPL0638, HCPL0639</td>
<td>5,000</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCM = 50 V</td>
<td>HCPL0601, HCPL0638</td>
<td>10,000</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCM = 1,000 V</td>
<td>HCPL0611, HCPL0639</td>
<td>15,000</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCPL0639</td>
<td>25,000</td>
<td>V/μs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSFER CHARACTERISTICS
(TA = −40°C to +85°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>DC Characteristics</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOH</td>
<td>High Level Output Current</td>
<td>VCC = 5.5 V, VO = 5.5 V, IF = 250 μA, VE = 2.0 V (Note 3)</td>
<td>100</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>Low Level Output Voltage</td>
<td>VCC = 5.5 V, IF = 5 mA, VE = 2.0 V, IOL = 13 mA (Note 3)</td>
<td>0.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFT</td>
<td>Input Threshold Current</td>
<td>VCC = 5.5 V, VO = 0.6 V, VE = 2.0 V, IOL = 13 mA</td>
<td>5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All typical values are at VCC = 5 V, TA = 25°C.
Isolation Characteristics (TA = −40°C to +85°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{i-O}</td>
<td>Input–Output Insulation Leakage Current</td>
<td>Relative humidity = 45%, TA = 25°C, t = 5 s, V_{i-O} = 3000 VDC (Note 12)</td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{ISO}</td>
<td>Withstand Insulation Test Voltage</td>
<td>RH < 50%, TA = 25°C, I_{i-O} ≤ 2 µA, t = 1 min. (Note 12)</td>
<td>3750</td>
<td></td>
<td></td>
<td>VRMS</td>
</tr>
<tr>
<td>R_{i-O}</td>
<td>Resistance (Input to Output)</td>
<td>VI-O = 500 V (Note 12)</td>
<td>10^{12}</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>C_{i-O}</td>
<td>Capacitance (Input to Output)</td>
<td>f = 1 MHz (Note 12)</td>
<td>0.6</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

*All typical values are at VCC = 5 V, TA = 25°C.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Notes:

2. The VCC supply to each optoisolator must be bypassed by a 0.1 µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package VCC and GND pins of each device.

3. Enable Input – No pull up resistor required as the device has an internal pull up resistor.

4. t_{PLH} – Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.

5. t_{PHL} – Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.

6. t_r – Rise time is measured from the 90% to 10% levels on the LOW to HIGH transition of the output pulse.

7. t_f – Fall time is measured from the 10% to 90% levels on the HIGH to LOW transition of the output pulse.

8. t_{ELH} – Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.

9. t_{EHL} – Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.

10. CM_{Hi} – The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., VOUT > 2.0 V). Measured in volts per microsecond (V/µs).

11. CM_{Li} – The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e., VOUT < 0.8V). Measured in volts per microsecond (V/µs).

12. Device considered a two–terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.
TYPICAL PERFORMANCE CURVES
(HCPL0600, HCPL0601 and HCPL0611 only)

Figure 3. Forward Current vs. Input Forward Voltage

Figure 4. Output Voltage vs. Forward Current

Figure 5. Input Threshold Current vs. Temperature

Figure 6. High Level Output Current vs. Temperature

Figure 7. Low Level Output Voltage vs. Temperature

Figure 8. Low Level Output Current vs. Temperature

VCC = 5 V
VO = 0.6 V
RL = 350 Ω
RL = 1 kΩ

TA = 25 °C

TA = −40 °C

TA = 70 °C

TA = −40 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C

TA = 85 °C

TA = 70 °C

TA = 20 °C

TA = 0 °C
TYPICAL PERFORMANCE CURVES
(HCPL0600, HCPL0601 and HCPL0611 only)

Figure 9. Propagation Delay vs. Temperature

Figure 10. Propagation Delay vs. Pulse Input Current

Figure 11. Typical Enable Propagation Delay vs. Temperature

Figure 12. Typical Rise and Fall Time vs. Temperature

Figure 13. Typical Pulse Width Distortion vs. Temperature
TYPICAL PERFORMANCE CURVES
(HCPL0637, HCPL0638 and HCPL0639 only)

Figure 14. Input Forward Current vs. Forward Voltage

Figure 15. Input Threshold Current vs. Ambient Temperature

Figure 16. High Level Output Current vs. Ambient Temperature

Figure 17. Low Level Output Current vs. Ambient Temperature

Figure 18. Low Level Output Voltage vs. Ambient Temperature

Figure 19. Pulse Width Distortion vs. Ambient Temperature
TYPICAL PERFORMANCE CURVES
(HCPL0637, HCPL0638 and HCPL0639 only)

Figure 20. Propagation Delay vs.
Ambient Temperature

Figure 21. Rise and Fall Times vs.
Ambient Temperature

Figure 22. Test Circuit and Waveforms for tPLH, tPHL, tr and tf

Figure 23. Test Circuit tEHL and tELH
Figure 24. Test Circuit and Waveforms for Common Mode Transient Immunity (HCPL0600, HCPL0601 and HCPL0611)
Figure 25. Test Circuit and Waveforms for Common Mode Transient Immunity (HCPL0637, HCPL0638 and HCPL0639)
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Packing Method†</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCPL0600</td>
<td>Small Outline 8–Pin</td>
<td>Tube (50 Units)</td>
</tr>
<tr>
<td>HCPL0600R2</td>
<td>Small Outline 8–Pin</td>
<td>Tape and Reel (2500 Units)</td>
</tr>
<tr>
<td>HCPL0600V</td>
<td>Small Outline 8–Pin, DIN EN/IEC60747–5–5 Option</td>
<td>Tube (50 Units)</td>
</tr>
<tr>
<td>HCPL0600R2V</td>
<td>Small Outline 8–Pin, DIN EN/IEC60747–5–5 Option</td>
<td>Tape and Reel (2500 Units)</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

13. The product orderable part number system listed in this table also applies to the HCPL0601, HCPL0611, HCPL0637, HCPL0638 and HCPL0639 product.

CARRIER TAPE SPECIFICATIONS

![Carrier Tape Specifications Diagram](image-url)
REFLOW PROFILE

Max. Ramp-up Rate = 3°C/S
Max. Ramp-down Rate = 6°C/S

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Pb-Free Assembly Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Min. (Tsmin)</td>
<td>150°C</td>
</tr>
<tr>
<td>Temperature Max. (Tsmax)</td>
<td>200°C</td>
</tr>
<tr>
<td>Time (tS) from (Tsmin to Tsmax)</td>
<td>60–120 seconds</td>
</tr>
<tr>
<td>Ramp-up Rate (tL to tP)</td>
<td>3°C/second max.</td>
</tr>
<tr>
<td>Liquidous Temperature (TL)</td>
<td>217°C</td>
</tr>
<tr>
<td>Time (tL) Maintained Above (TL)</td>
<td>60–150 seconds</td>
</tr>
<tr>
<td>Peak Body Package Temperature</td>
<td>260°C +0°C /−5°C</td>
</tr>
<tr>
<td>Time (tP) within 5°C of 260°C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate (TP to TL)</td>
<td>6°C/second max.</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>8 minutes max.</td>
</tr>
</tbody>
</table>
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

SOIC8
CASE 751DZ
ISSUE 0

DATE 30 SEP 2016

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.

DOCUMENT NUMBER: 98AON13733G
DESCRIPTION: SOIC8

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

HCPL0600R2 HCPL0601 HCPL0600 HCPL0601V HCPL0601R2 HCPL0600R2V HCPL0600V HCPL0601R2V
HCPL0637 HCPL0637R2 HCPL0638 HCPL0638R2 HCPL0639 HCPL0639R2 HCPL0611 HCPL0611R2