To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FQP5N60C / FQPF5N60C
N-Channel QFET® MOSFET
600 V, 4.5 A, 2.5 Ω

Description
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor’s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features
- 4.5 A, 600 V, \(R_{DS(on)} = 2.5 \Omega \) (Max.) @ \(V_{GS} = 10 \) V, \(I_D = 2.25 \) A
- Low Gate Charge (Typ. 15 nC)
- Low Crss (Typ. 6.5 pF)
- 100% Avalanche Tested

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>FQP5N60C</th>
<th>FQPF5N60C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DSS})</td>
<td>Drain-Source Voltage</td>
<td>600 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_D)</td>
<td>Drain Current - Continuous ((T_C = 25^\circ C))</td>
<td>4.5 A</td>
<td>4.5 A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6 A</td>
<td>2.6 A</td>
<td>A</td>
</tr>
<tr>
<td>(I_{DM})</td>
<td>Drain Current - Pulsed (Note 1)</td>
<td>18 A</td>
<td>18 A</td>
<td>A</td>
</tr>
<tr>
<td>(V_{GSS})</td>
<td>Gate-Source Voltage</td>
<td>(\pm 30) V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_{AS})</td>
<td>Single Pulsed Avalanche Energy (Note 2)</td>
<td>210 mJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{AR})</td>
<td>Avalanche Current (Note 1)</td>
<td>4.5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_{AR})</td>
<td>Repetitive Avalanche Energy (Note 1)</td>
<td>10 mJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{dV}{dt})</td>
<td>Peak Diode Recovery (\frac{dV}{dt}) (Note 3)</td>
<td>4.5 V/ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power Dissipation ((T_C = 25^\circ C))</td>
<td>100 W</td>
<td>33 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Derate above 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8 W/°C</td>
<td>0.26 W/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_J, T_{STG})</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_L)</td>
<td>Maximum Lead Temperature for Soldering, 1/8” from Case for 5 Seconds</td>
<td>300 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Drain current limited by maximum junction temperature.

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>FQP5N60C</th>
<th>FQPF5N60C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JUC})</td>
<td>Thermal Resistance, Junction-to-Case, Max.</td>
<td>1.25 °C/W</td>
<td>3.79 °C/W</td>
<td></td>
</tr>
<tr>
<td>(R_{ICS})</td>
<td>Thermal Resistance, Case-to-Sink Typ, Max.</td>
<td>0.5 °C/W</td>
<td>-- °C/W</td>
<td></td>
</tr>
<tr>
<td>(R_{JA})</td>
<td>Thermal Resistance, Junction-to-Ambient, Max.</td>
<td>62.5 °C/W</td>
<td>62.5 °C/W</td>
<td></td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FQP5N60C</td>
<td>FQP5N60C</td>
<td>TO-220</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
<tr>
<td>FQP5N60C</td>
<td>FQP5N60C</td>
<td>TO-220F</td>
<td>Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>50 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics

- \(T_C = 25^\circ C \) unless otherwise noted.

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{VDSS})</td>
<td>Drain-Source Breakdown Voltage (V_{GS} = 0 \ V, \ I_D = 250 \mu A)</td>
<td>600</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta B_{VDSS} / \Delta T_J)</td>
<td>Breakdown Voltage Temperature Coefficient (I_D = 250 \mu A,) Referenced to 25(^\circ C)</td>
<td>-- (0.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{DSS})</td>
<td>Zero Gate Voltage Drain Current (V_D = 600 \ V, \ V_{GS} = 0 \ V)</td>
<td>-- (1 \mu A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{GSSF})</td>
<td>Gate-Body Leakage Current, Forward (V_{GS} = 30 \ V, \ V_D = 0 \ V)</td>
<td>-- (100) nA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{GSSR})</td>
<td>Gate-Body Leakage Current, Reverse (V_D = -30 \ V, \ V_D = 0 \ V)</td>
<td>-- (-100) nA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{GS(th)})</td>
<td>Gate Threshold Voltage (V_D = V_{GS}, \ I_D = 250 \mu A)</td>
<td>2.0 (4.0) V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
<td>Static Drain-Source On-Resistance (V_D = 10 \ V, \ I_D = 2.25) A</td>
<td>-- (2.0) (2.5) (\Omega)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_{FS})</td>
<td>Forward Transconductance (V_D = 40 \ V, \ I_D = 2.25) A</td>
<td>-- (4.7) (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{iss})</td>
<td>Input Capacitance (V_D = 25 \ V, \ V_{GS} = 0 \ V,)</td>
<td>-- (515) (670) pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{oss})</td>
<td>Output Capacitance (f = 1.0) MHz, (V_D = V_{GS} = 0) (\mu A)</td>
<td>-- (55) (72) pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{rss})</td>
<td>Reverse Transfer Capacitance (f = 1.0) MHz, (V_D = V_{GS} = 0) (\mu A)</td>
<td>-- (6.5) (8.5) pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{D(on)})</td>
<td>Turn-On Delay Time (V_D = 300 \ V, \ I_D = 4.5) A</td>
<td>-- (10) (30) ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_r)</td>
<td>Turn-On Rise Time (A, R_G = 25) (\Omega)</td>
<td>-- (42) (90) ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{D(off)})</td>
<td>Turn-Off Delay Time (V_D = 480 \ V, I_D = 4.5) A</td>
<td>-- (38) (85) ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_f)</td>
<td>Turn-Off Fall Time (A, R_G = 25) (\Omega)</td>
<td>-- (46) (100) ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q_g)</td>
<td>Total Gate Charge (V_D = 480 \ V, I_D = 4.5) A</td>
<td>-- (15) (19) nC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q_{gs})</td>
<td>Gate-Source Charge (V_D = 10) V</td>
<td>-- (2.5) (nC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q_{gd})</td>
<td>Gate-Drain Charge (V_D = 480 \ V, I_D = 4.5) A</td>
<td>-- (6.6) (nC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drain-Source Diode Characteristics and Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_D)</td>
<td>Maximum Continuous Drain-Source Diode Forward Current</td>
<td>--</td>
<td>--</td>
<td>4.5</td>
<td>A</td>
</tr>
<tr>
<td>(I_{SM})</td>
<td>Maximum Pulsed Drain-Source Diode Forward Current</td>
<td>--</td>
<td>--</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>(V_{SD})</td>
<td>Drain-Source Diode Forward Voltage (V_D = 0) V, (I_D = 4.5) A</td>
<td>--</td>
<td>--</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>(t_r)</td>
<td>Reverse Recovery Time (V_D = 0) V, (I_D = 4.5) A, (dI_F / dt = 100) (A / \mu s)</td>
<td>--</td>
<td>300</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>(Q_{rr})</td>
<td>Reverse Recovery Charge (dI_F / dt = 100) (A / \mu s)</td>
<td>--</td>
<td>2.2</td>
<td>--</td>
<td>(\mu C)</td>
</tr>
</tbody>
</table>

Notes:
1. Repetitive rating: pulse-width limited by maximum junction temperature.
2. \(L = 18.9 \) \(mH \), \(I_{DS} = 4.5 \) A, \(V_{DD} = 50 \) V, \(R_G = 25 \) \(\Omega \), starting \(T_J = 25^\circ C \).
3. \(I_{DS} = 4.5 \) A, \(di/dt \leq 200 \) \(A / \mu s \), \(V_{DD} \leq B_{VDS}, \) starting \(T_J = 25^\circ C \).
4. Essentially independent of operating temperature.
Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics
Typical Characteristics

Figure 7. Breakdown Voltage Variation vs Temperature

Figure 8. On-Resistance Variation vs Temperature

Figure 9-1. Maximum Safe Operating Area for FQP5N60C

Figure 9-2. Maximum Safe Operating Area for FQPF5N60C

Figure 10. Maximum Drain Current vs Case Temperature
Typical Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FQP5N60C

Figure 11-2. Transient Thermal Response Curve for FQPF5N60C
Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms
Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
Figure 16. TO-220, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003
Figure 17. TO220, Molded, 3-Lead, Full Pack, EIAJ SC91, Straight Lead

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP™
BitSIC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™
F-FFS™
FRFET®
Global Power ResourceSM
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPal™
MicroPal2™
MillerDrive™
MotionMax™
mWSaver®
OptoHit™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QOS™
Quiet Series™
RapidConfigure™
SyncFET™
Sync-Lock™
SYSTEM®
SERIES™
TinyBoost™
TinyBuck®
TinyCalc™
TinyLogic®
TIANYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC®
Trifault Detect™
TRUECURRENT™
µSerDes™
Ultra FRFET™
UnifET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

These specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the Warranty therein, which covers these products.

LIFE SUPPORT POLICY
FAIRCCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:
FQPF5N60C FQP5N60C